
www.manaraa.com

Abstract Recent years have witnessed a tremendous growth in information
and communication technologies that facilitate the design and implementation
of complex inter-enterprise business processes. One of the major innovations
is the concept of service-oriented architectures which considers software
systems as being made up with autonomous, dynamic, loosely coupled and
service-based components. This paper describes an attempt to automate
financial business processes by utilizing a number of basic and composite
services. As a case study, the paper describes the implementation of a realistic
business process that is related to simulating a trading strategy in capital
markets. An evaluation of the appropriateness of service-oriented architec-
tures is conducted taking into account a number of factors such as flexibility,
performance and development costs.

Keywords SOA Æ Trading strategy Æ Capital market Æ Web services Æ
Business processes Æ Financial application

1 Introduction

The area of finance has always evolved along side with the development of
new technologies. For instance, utilizing new technologies in trading auto-
mation is one of the major factors that contributes to markets efficiency and

F. A. Rabhi (&) Æ H. Yu Æ S. Y. Wu
School of Information Systems, Technology and Management, University of New South
Wales, Sydney, NSW 2052, Australia
e-mail: f.rabhi@unsw.edu.au

F. T. Dabous
College of Computer Science and Information Technology, Abu Dhabi University,
Abu Dhabi, United Arab Emirates

123

ISeB (2007) 5:185–200
DOI 10.1007/s10257-006-0041-x

ORI GI N A L A R T I CLE

A service-oriented architecture for financial business
processes

A case study in trading strategy simulation

Fethi A. Rabhi Æ Hairong Yu Æ Feras T. Dabous Æ
Sunny Y. Wu

Published online: 5 October 2006
� Springer-Verlag 2006

www.manaraa.com

competitiveness and has had a huge impact on the costs incurred by financial
institutions. As a result, financial systems have been undertaking constant
evolutions to support new enabled business processes and adapt to drastic
technological changes. In the context of this paper, a business process is de-
fined as a series of activities which support the daily operations of an enter-
prise (Hammer and Champy 1993). Business processes model the behaviour
of business interactions required by stakeholders and are defined based on the
rules or policies of the business. They often involve cross-department or cross-
institutional entities and utilize data from multiple systems. This paper is
primarily concerned with the provision of an adequate software infrastructure
to support inter-organizational business processes in the finance area.

Related work in this area includes business process automation technolo-
gies. Following on the work of standardization bodies such as the workflow
management coalition (WfMC) (http://www.aiim.org/wfmc), there are now
many workflow management system (WFMS) products available. In practice,
they have proved ineffective and hard to evolve when considering the needs of
business-to-business interactions (Medjahed et al. 2003) and in particular the
utilization of legacy functionalities. Early efforts, such as the definition of a
workflow reference model (Hollinsworth 1995) and other standardization
efforts [e.g. jointFlow (Workflow management facility 1998), the simple
workflow access protocol (SWAP) (Bolcer and Kaiser 1999) and Wf-XML
message set (http://www.wfmc.org)], provide little support for inter-enterprise
business processes. Although the next generation of inter-enterprise workflow
(IEWf) systems promises to interconnect cross-organization business pro-
cesses while supporting the integration of diverse users, applications, and
legacy systems (Yang and Papazoglou 2000), no current approach seems to
propose a completely generic solution.

Web services technology is another technique for realizing business process
automation. Web services utilizes XML as the fundamental data format to
form three underlying standards (Ma 2005)—the messaging format (SOAP),
web services description language (WSDL) and universal description, dis-
covery and integration (UDDI). Web Services mostly uses hypertext transfer
protocol (HTTP) as the transport of message exchanges of the services. In
order to integrate the individual services to form a business process, business
process execution language (BPEL) is the most common language to invocate
multiple services (http://www.oasis-open.org). Similar to web services, BPEL
uses XML as the fundamental data format to define the execution and
orchestration of web services through their respective WSDL files and provide
a tracking and fault handling mechanism. It supports synchronous/asynchro-
nous, short-lived/long-running and stateful/stateless web services (Pasley
2005). Currently all major vendors offer solutions to the market, such as IBM
Service Oriented Architecture (SOA) Foundation (http://www.306.ibm.com/
software/solutions/soa), Oracle SOA Suite (http://www.oracle.com/technolo-
gies/soa) and webMethods Fabric (http://www.webmethods.com). All of those
vendor solutions provide streamlined integration of web service technologies
along with higher-level features such as service registry, monitoring and

186 F. A. Rabhi et al.

123

www.manaraa.com

management, business process orchestration and analytics software. Inte-
grated development suites that offer a number of building blocks for con-
structing the business processes are also included.

Despite these developments, a large and complex application domain such
as capital markets presents a number of challenges. Amongst these challenges,
we identify the following ones as of major concern to potential developers:

Intellectual complexity A consistent view and understanding of business
processes spanning different market segments as well a number of networked
computer systems requires multidisciplinary knowledge in areas as diverse as
finance, economics, accounting, information systems, networking and com-
puting systems. This results in high development and management costs of the
underlying infrastructures.

Difficulty in evaluation Whilst new technologies have clear benefits in
terms of technical quality attributes (e.g. better interoperability, higher
number of transactions per second), it is hard to relate them to business-
related quality attributes such as the performance of an investment strategy,
the risk level, the transaction cost etc. A consequence is the difficulty in
assessing the impact of introducing a new technology or design, studying
trade-offs between different implementation choices etc.

Methodologies that are being used in practice can be classified as either
top-down or bottom-up. A top-down strategy works its way from business
process specifications (e.g. workflows) down to implementations. A bottom-up
strategy usually involves the use of frameworks that guide the process of
integrating legacy systems. Examples include the methodological framework
of Mercella and Batini (2000) and Mecella and Pernici (2001), the business
applications to legacy systems (BALES) methodology (van den Heuvel et al.
1999, 2002) (supports web services development) and the Attachmate’s
methodology for integrating legacy applications. In recent years, the concept
of SOAs (Curbera et al. 2003; Huhns and Singh 2005) has become increasingly
popular as it offers an alternative strategy. Given a community of services, it
gives the opportunity to make a clear separation between the concerns of
service users and those of service providers. It allows the development process
to proceed in two directions at the same time. On one hand, business pro-
cesses can be expressed in an appropriate notation that utilizes services (using
BPEL for instance). On the other hand, service wrappers can be developed
around legacy systems (for example using web services (http://www.w3.org/
TR/ws-arch)). Other researchers have also started to acknowledge the benefits
of an SOA in automating financial business processes (Zimmermann et al.
2004; Homann et al. 2004).

However, the literature lacks documented usage of SOAs in this applica-
tion domain. One major challenge in the use of an SOA is to determine what a
service actually is. An adequate trade-off has to be achieved between estab-
lishing direct connections between business concepts and existing legacy sys-
tems. This can only be achieved through a detailed study of a particular
domain, examining its core business processes and the architecture of its
existing systems.

A service-oriented architecture for financial business processes 187

123

www.manaraa.com

This paper’s contribution is to provide insights on a particular sub-domain
in finance, namely the capital markets trading cycle. This area is characterized
by a large number of heterogeneous systems that include information distri-
bution systems (e.g. for real-time quotes, historical trade data), order pro-
cessing systems (e.g. order routing, presentation, and execution), clearing and
settlement systems, and research and analysis systems (Harris 2003). The
paper describes our view on the services that operate in this area and explains
their roles in the definition and implementation of trading-related business
processes. Similar analysis can be conducted on other areas in the finance
domain. The rest of this paper is organized as follows. Section 2 states our
basic principles and assumptions. Section 3 presents an overview of our SOA
that supports the trading cycle in capital markets. Section 4 is a case study
which discusses the implementation of two basic services and a composite
service that simulates a trading strategy. Section 5 evaluates the proposed
SOA. The final section presents the conclusions and future work.

2 Service-oriented concepts

Service-oriented computing (SOC) has become increasingly popular as it of-
fers a technology-independent view of systems. SOC is a design paradigm that
utilizes the concept of ‘‘service’’ as a fundamental element for developing
software. Here the ‘‘service’’ is an application logic or underlying computing
resource that is exposed through an interface and which can be invoked over a
network (Papazoglou 2003). The SOC approach allows the concept of services
to expand to include not only an autonomous computing entity (i.e. basic
service), but also a complex process (i.e. composite service) that requires the
intervention of a number of other services in order to complete required
activities like a business process. As a result, SOC provides an abstraction of
the definition and modeling of business processes from the actual tools and
systems which are required for implementation.

To build the service model, SOC relies on service-oriented architecture
(SOA). An SOA is a decentralized way of thinking about composing software.
It reorganizes a portfolio of previously developed software and a supporting
infrastructure into an interconnected set of services, each of which is acces-
sible through standardized interfaces and messaging protocols, and therefore
provisioning interoperability among heterogeneous systems. An SOA also
provides a vehicle for enforcing the business managers’ perspective during
software development by viewing processes as collections of inter-related
services. From a recent survey (Quocirca Ltd. SOA 2005), the adoption of
SOAs is growing - almost one-fifth of the surveyed companies have already
actively adopted SOAs during the development cycle while another quarter is
considering adopting in near future.

We adopt the following terminology when describing services. A func-
tionality will refer to a particular function offered by a service and can be
implemented in code. Functionalities will be given names e.g. ‘‘Process

188 F. A. Rabhi et al.

123

www.manaraa.com

Query’’ will refer to the processing of a query for obtaining trade-related data.
In every context, there will be a number of existing legacy systems which
already implement a set of functionalities.

A business process will be represented by a diagram which shows the
functionalities involved and the relationships between them. We use the
business process management notation (BPMN) standard (2004) that depicts
the process flow dependencies among a number of activities (called business
task objects) which are part of a particular functionality. The BPMN standard
is promoted by the business process management initiative.

The next section presents an SOA that is concerned with the capital mar-
kets trading cycle. The following sections will describe the implementation of
selected services using web services technology and their role in expressing
complex business processes.

3 A service-oriented architecture for capital markets

This section describes an SOA which addresses the trading cycle in its early
phases, based on a preliminary one presented in Rabhi and Benatallah (2002).
Experience has shown that an architecture that supports a complete inte-
grated trading cycle (known as straight through processing (STP) in capital
markets) is not yet feasible as there are still standardization issues that are far
from being resolved. STP is an ideal model that is supposed to automate all
transactional processing from initiation to resolution in the same way as
supply chain management (SCM) and customer relationship management
(CRM) models are used in the manufacturing and the service industry
respectively.

Our architecture, which is illustrated in Fig. 1, distinguishes the following
types of services:

Exchange services They consist of transaction-based systems that imple-
ment market matching functions i.e. matching buyer and seller orders and
produce trades. Such services allow the trading of any type of securities such
as stocks, bonds, derivatives and currencies.

Trading data services They manage information related to quotes, orders
and trade transactions over time. The data could be historical or obtained in
real-time from exchanges in different ways e.g. publish-subscribe fashion.

Business Processes

Exchange
Services

Trading
Data

Services

Analytics
Services

Broker
Services

Issuer Data
Services

Communication and Middleware Infrastructure

Fig. 1 A service-oriented software architecture for the trading cycle

A service-oriented architecture for financial business processes 189

123

www.manaraa.com

Issuer data services They manage information about securities issuers (e.g.
accounting data, announcements) over time. Data could also be historical or
obtained ‘‘on-the-fly’’.

Analytics services They refer to data mining and visualization applications
which analyze real-time or historical data. They comprise a variety of models
for different purposes e.g. offering valuable insights on companies and
industry trends for analysts, determining trading opportunities for brokers or
checking compliance for regulators.

Broker services Brokerage types vary widely in the quantity and quality of
the services they provide for customers. Common features involve formulating
a trading strategy based on some objectives (e.g. maximizing returns, risk
management), providing information, implementing trading plans, managing
customer requests throughout the entire trading cycle (e.g. managing cus-
tomer databases, routing orders, reporting/accounting, etc.).

These services form core components in realizing a number of trading-
related business processes, one of which will be discussed next.

4 Case study

The purpose of the case study is twofold:

• Discuss two basic services (one exchange service and one trading data
service) in terms of the functionalities they offer and their web service
implementations based on existing legacy systems

• Describe a composite service that implements a business process involving
the two basic services using BPMN.

4.1 Exchange service

4.1.1 Service description

The role of the exchange service is to allow traders to place their orders and
perform matching according to the financial market model it supports. After
submitting an order, the trader receives a unique confirmed order identifica-
tion which can be subsequently used in cancellation or amendment requests.
Traders can also inspect the orderbook to check the position of their orders.
The main functionalities of the exchange service used in the case study are
summarized as follows:

• Process order. Orders (buy or sell) are processed when they are submitted
to the exchange service either within the specific date or reloaded from the
database at the start of trading (e.g. in the case of orders that do not expire
until a specific future date). The orders include cancelled and amended
orders, which are occasionally submitted by traders. All the valid orders
are collected in a data structure called the order book.

190 F. A. Rabhi et al.

123

www.manaraa.com

• Generate trades. Trades are generated by examining the order book and
determining successful matches according to the algorithms implementing
the rules of the exchange (they could be different according to the time of
trade and the market type).

• Information dissemination. Information related to all activities of the ex-
change service (including orders and trades) is stored and disseminated to
the market participants through a suitable communication infrastructure
(usually based on a publish/subscribe model).

The corresponding activities are illustrated in the BPMN diagram shown in
Fig. 2. We only highlight the three main functionalities described earlier.
There are many other functionalities such as those that support administrative
functions (e.g. authentication, user registration) and market configuration
(e.g. opening/closing the market, changing the matching algorithm) that are
not shown here for simplicity.

4.1.2 Implementation

A prototype exchange service has been implemented using a web service
wrapper on top of a fully-fledged commercial financial market trading system
called X-Stream (http://www.computershare.com.au). X-Stream is one of the
first generation exchange trading systems that have been designed around a
client–server architecture and can be configured to work with different market
structures. All configuration information is held in a relational database. X-
Stream is a distributed system as it consists of two trading engines (main and
backup) and several gateways which can connect trading engine it to broker
systems. Most of its code is written in C++ for optimum speed, we adopted a
C++ wrapper and used an SOAP development environment called gSOAP.
Some experiences on developing the exchange service using gSOAP are re-
ported in Yu et al. (2004).

Process Order

Generate Trades

Information
Dissemination

Order Receiving
and Validation

Sending Order
Confirmation

Inserting Order in
Orderbook

Order Book
Initializaton

Order _ID

Matching Orders

Order /Trade Book
Dissemination

Orders&Trades
Logbook Update

Trades
Generation

Exchange Closed?

Yes

No

Order Info.

Trade Info.

Yes

No

Yes

No

Exchange Closed?

Exchange Closed?E
xc

ha
ng

e
 S

er
vi

ce

Fig. 2 Functionalities in the exchange service

A service-oriented architecture for financial business processes 191

123

www.manaraa.com

4.2 Trading data service

4.2.1 Service description

A trading data service (TDS) is dedicated to the provision of market data such
as buy or sell orders and the resulting trades in response to queries. In general,
there are two categories of queries: intraday (data related to a specific time
interval during a trading day); and interday (daily, weekly or monthly sum-
maries of trading activities over a period of time which is more than 1 day). A
frequency (e.g. daily, weekly or monthly) can be associated with the summary
and several metrics which represent some analysis of the performance or state
of a security (e.g. Beta which measures a stock’s volatility and volume
weighted average price (VWAP) is a typical trading benchmark). The main
functionalities of the trading data service used in the case study are summa-
rized as follows (see Fig. 3):

• Get metadata determines markets and types of queries that are supported
by a particular service implementation.

• Process query executes a query formulated according to the metadata and
containing the appropriate parameters.

• Monitor query progress checks a query’s progress in case of a query that
involves a large amount of data and a long time to process.

• Process results relate to the way query results are accessed (e.g. down-
loading the data from a network server).

Get Metadata

T
ra

d
in

g
D

at
a

 S
e

rv
ic

e Process Query

Monitor Query Progress

Process Results

Retrieve Dataset
Receive Dataset
Access Request

Send Resulting
Dataset

Process Interrupted?

Yes

No

Check Progress
of Data Query

Receive Progress
Query

Send Progress
Status

Process Interrupted?

Yes

No

Progress Data
Query

Receive&Validate
Query Data

Send Completion
Notification

Process Interrupted?

Yes

No

Process Meta-
data Query

Read Database
Status

Send Meta-data
Information

No

Yes

Process Interrupted?

Fig. 3 Functionalities in the trading data service

192 F. A. Rabhi et al.

123

www.manaraa.com

Though the query types are quite different from each other, they all have a
number of common parameters such as Start Date, End Date, Market,
Compression (the compression type to be applied to the resulting data file),
Output Format (e.g. CSV or XML), WSDLCallBack (the WSDL service end-
point which TDS will invoke upon the query process completion), and Email
(for sending notifications upon the completion of a query).

4.2.2 Implementation

A prototype has been implemented on top of a number of existing systems
that manage large financial data repositories:

• SMARTS surveillance system: (http://www.smarts-systems.com), which is
designed to process and manage trade data from a large number of
financial markets worldwide. SMARTS stores all data in a proprietary
binary format and provides some basic access functions in C to the data
through a customized application programming interface (API).

• ASPECT accounting database: (http://www.aspectfinancial.com.au), which
is a comprehensive source for listed companies on the Australian and New
Zealand Stock Exchange.

• IBES financial analyst forecast database: (http://www.thomson.com/finan-
cial), which is a source for analysts’ forecast data, research reports and
tools for institutional money managers.

In this prototype implementation, both queries and metadata are expressed in
XML so that clients can use any third-party applications (e.g. Extensible
Stylesheet Language Transformation or XSLT engines) to manipulate them.
TDS’s business logic is implemented using Enterprise Java Beans (EJB)
(http://www.oss.org) components and deployed on the JBoss J2EE-based
application server. The implementation of most components involves making
calls to the SMARTS API. The Web Service is supported by the Axis SOAP
engine (http://www.apache.org/soap) and a MySQL relational database
(http://www.mysql.com) is used for storing administrative information such as
security permissions and submitted query details.

4.3 Trading strategy simulation service

We now illustrate the implementation of a composite service as a combination
of several basic services. The selected service is part of a trading strategy
simulation suite tools which is available for traders to test the effectiveness of
a particular trading strategy. Each simulation consists of re-running the
market events of a specific trading period using a particular trading strategy
and then evaluating its effectiveness. An essential aspect of any strategy is to
formulate how or when to place an order by identifying some relevant market
conditions called trading signals. Having the ability to simulate a strategy gives
a brief indication on how it may perform in the real market.

A service-oriented architecture for financial business processes 193

123

www.manaraa.com

The BPMN business process diagram that corresponds to this service is
presented in the middle of Fig. 4 (the top and bottom part of the figure are
reproductions of the two basic services described previously). We can see that
there are three main functionalities involved:

Get Metadata

T
ra

d
in

g
D

a
ta

 S
e

rv
ic

e

Process Query

Monitor Query Progress

Process Results

Retrieve Dataset
Receive Dataset
Access Request

Send Resulting
Dataset

Process Interrupted?

Yes

No

Check Progress
of Data Query

Receive Progress
Query

Send Progress
Status

Process Interrupted?

Yes

No

Progress Data
Query

Receive&Validate
Query Data

Send Completion
Notification

Process Interrupted?

Yes

No

Process Meta-
data Query

Read Database
Status

Send Meta-data
Information

No

Yes

Process Interrupted?

Dataset Preparation

Simulation Control

Strategy Execution
Monitor Market

Events
Generate and
Submit Orders

More Orders to Submit?

No

Yes

Conduct
Simulation

Set Simulation
Parameters

Evaluate Strategy

Construct Query
for Dataset

Determine Period
of Simulation

Submit Dataset
Query

Obtain Dataset

E
xc

h
a

ng
e

S
e

rv
ic

e

Process Order

Generate Trades

Information
Dissemination

Order Receiving
and Validat ion

Sending Order
Confirmation

Inserting Order in
Orderbook

Order Book
Initializaton

Order _ID

Matching Orders

Order/Trade Book
Dissemination

Orders&Trades
Logbook Update

Trades
Generation

Exchange Closed?

Yes

No

Order Info.

Trade Info.

Yes

No

Yes

No

T
ra

di
ng

S
tr

a
te

g
y

 S
im

u
la

tio
n

Exchange Closed?

Exchange Closed?

Fig. 4 Trading strategy simulation business process

194 F. A. Rabhi et al.

123

www.manaraa.com

• Dataset preparation. It involves preparing the trade dataset that will be
used during the simulation. This dataset is used to recreate the trading
conditions that the strategy is to be used against. We can see that this
functionality requires access to an external service (TDS shown on top).

• Strategy execution implements the strategy being evaluated by monitoring
the market events (looking for trading signals) and generating orders
according to the market conditions being recreated and the strategy being
evaluated (i.e. new orders generated from trading signals). Orders are
submitted to an external service (ES shown at the bottom) for processing.

• Simulation control is responsible for the overall control of the simulation.
It reads the simulation parameters launches the generation of the historic
dataset and controls the strategy execution according to these parameters.
Finally, an evaluation will be undertaken and the performance of the
strategy will be determined. This strategy evaluation part may access TDS
to obtain the artificial trade data created during the simulation (this not
shown in the figure for simplicity).

We can see that most functionalities used in this business process are
either internal to the business process or ‘‘outsourced’’ to basic services like
the exchange service (ES) or the trading data service (TDS). Some internal
operations can themselves be made into new services and reused as part of
other business processes. For example, ‘‘Monitor Market Events’’ in
strategy execution can be used in business processes related to market
surveillance. Also, a composite service could be made into a basic service
provided there is an existing system that provides the required function-
alities. This is a characteristic of this application domain which has a large
number of systems providing overlapping functionalities. A consequence is
that there are many alternatives in expressing business processes hence the
need for flexibility through the use of an SOA and business process
modeling tools.

5 Evaluation

The Service-oriented architecture needs to be evaluated in the way it ad-
dresses the two challenges outlined in the introduction: ability to handle the
design of complex systems from a business perspective and the possibility to
reason about its quality attributes, study trade-offs between different imple-
mentation choices, etc.

5.1 Expressing complex business processes

Concerning the first aspect, the case study described in the previous section
has demonstrated the capability of describing a complex business process as
several services interacting with each other visually. It also illustrated how the

A service-oriented architecture for financial business processes 195

123

www.manaraa.com

trading strategy simulation business process makes use of existing facilities,
e.g. here the exchange service is provided by a legacy system in a way that is
transparent to the user. The use of a BPMN modeling tool (http://www.itp-
commerce.com) has allowed direct connections to be made to the two pro-
totype web services (exchange service and trading data service). Other tools
e.g. acting as a business process orchestration engine (Oracle BPEL process
manager available at http://www.oracle.com/technology/products/ias/bpel),
have also allowed the business process to be simulated, modified and results to
be checked. This is important considering that there are many variations in
conducting trading strategy simulations, depending on the type of the market
structure (e.g. type of orders and matching algorithms), the information
available (e.g. type of market events being monitored), how evaluation is
conducted etc.

This verifies the claim that an SOA and its supporting technologies allow
business processes to be constructed, analyzed and modified much more
easily. Opportunities for the reuse of services in several business processes are
also apparent. For example, the TDS can be called by many other services
from anywhere over a network for completing either do-it-yourself or out-
sourcing business processes.

Despite the facilities offered, we found that the existing business process
description language shows limitations when more realistic situations are
being modelled. In these cases, diagrams become quickly cluttered and their
meaning is more obscure due to the difficulties in visually monitoring a large
number of activities and connections.

5.2 Quality-related aspects

Concerning the second aspect which is the ability to reason about the quality
of the architecture at a high level. We have selected three important quality
criteria that play important roles in many real-life projects and for which
various trade-offs exist:

• Performance: many business processes require efficient implementations
to maintain an adequate response time, process high volumes of data, etc.

• Development costs: this requirement originates from business stakehold-
ers, for which the desirable project’s cost is strictly specified. This would
impact other critical features such as quick deployment when the stake-
holders share to maintain some competitive advantage, exploit some
market opportunities, etc.

• Maintenance costs: this requirement is usually mandated by technical staff,
as they would have to bear the brunt of maintaining the system.

We now present some of the results of our evaluation with respect to these
three quality attributes. Additional details related to the evaluation process
and quality models used are available from Dabous (2005).

196 F. A. Rabhi et al.

123

www.manaraa.com

5.2.1 Performance

The main difference between SOA and non-SOA implementations is that an
SOA imposes additional penalties in accessing functionalities particularly
those supported by legacy systems. Exposing a legacy functionality by direct
invocation (i.e. through an API access method) has much better performance
than a service-oriented wrapper that normally uses text-based protocols. In
order to estimate the performance degradation caused by service wrappers,
we have measured the access time for our prototype exchange service with
and without a web service wrapper. Table 1 shows that the maximum deg-
radation in performance is around 10%. The performance overhead is gen-
erally defined as a ratio of absolute performance difference over the combined
unit performance in percent. Taking the example of one client case in Table 1,
its overhead is always as (42.5 – 40.1)(orders/s)/40.1(orders/s) = 5.99%. This is
based on messages containing a single transaction. In practice, existing ex-
changes are optimized to handle transactions in batches where the transac-
tions in each batch share a common opening and ending. Overall the results
show that the exchange service does not have much negative impact on the
performance when comparing it with the original legacy system. More
experimental data can be found in Yu et al. (2004).

In conclusion, service-based wrappers inevitably result in some perfor-
mance degradation. Such penalties are not important in running simulation
scenarios such as trading strategy simulation. In other business processes
which operate in real-time, a fraction of a second can be significant as it could
result in a lost opportunity to conduct a trade for example.

5.2.2 Development effort

The development effort required for implementing a business process is an
accumulation of the effort that is needed in:

• developing the required functionalities and creating the wrappers for re-
motely invoking these functionalities: one advantage of leveraging legacy
functionality is that there is no effort needed for developing that func-
tionality. Development effort associated with a wrapper depends on the
corresponding access type. For instance, the development effort for a
service-oriented wrapper is much more than that of direct access method
like RPC.

Table 1 Transaction rates (orders/s) for the exchange service

Without wrapper With wrapper Degradation (%)

1 client 42.5 40.1 5.99
4 clients 153.1 147.0 4.15
8 clients 166.7 151.0 10.40
12 clients 180.0 169.5 6.19
16 clients 190.0 182.6 4.05

A service-oriented architecture for financial business processes 197

123

www.manaraa.com

• implementing the business process logic (enactment) and invocations to
the required functionalities (through their wrappers): the code required to
invoke service-oriented wrappers is much simpler to develop than that of
direct access methods.

In the case of the majority of functionalities being provided by legacy systems,
service-oriented wrappers impose an additional development burden which is
only reduced when the number of business processes that utilize such wrap-
pers is large. For example, the functionality ‘‘Get Metadata’’ in our case study
is supported by an existing system (i.e. SMARTS). Therefore, reusing such a
functionality through a service-oriented wrapper can significantly reduce the
development effort of other domain business processes such as brokerage
business processes.

Our experience has also shown that developing wrappers for new func-
tionalities should always be service-oriented as the development effort is not
significantly affected (but it reduces the maintenance effort as we will see in
the next subsection).

5.2.3 Maintenance effort

Based on the assumption that access rights to the code of legacy systems are
very restricted, we are adopting the view that whenever there is a change
request for the code of a legacy functionality, then the whole functionality
encompassing the new change needs to be redeveloped. The new functionality
would then be accessible through a new wrapper and links to the old legacy
system re-routed to the new service.

One consequence is that, despite savings in development efforts, the
maintenance costs of leveraging legacy functionality are very high in the long
term. Providing service-oriented wrappers to either legacy or new function-
alities has the advantage that code to access these functionalities will be stable
and require little maintenance effort in the long term. In conclusion, when an
implementation uses an SOA, the overall maintenance effort is inevitably
reduced.

6 Conclusions

This work is motivated by the lack of realistic large-scale service-based
applications reported in the literature. Despite their promises, SOAs and their
enabling technologies (e.g. web services) still need to live up their claims as
powerful means of integrating business processes that can span across a
number of large distributed commercial applications.

Our study focused on financial business processes especially those involving
activities surrounding trading in capital markets. We adopted an SOA which
addresses the shortcomings of both top-down and bottom-up approaches. It
allows business processes to be expressed in an appropriate notation at the

198 F. A. Rabhi et al.

123

www.manaraa.com

same time as service implementations can be realized (using web services in
our case study).

Results of the case study show that it is possible to handle business pro-
cesses that are much more complex than those reported in the literature.
However, a service-oriented approach often assumes the existence of well-
specified business processes (i.e. that can be represented using BPMN dia-
grams). We have found out that most business processes operating in the
financial domain are not explicitly identified and documented, unlike in other
application domains such as supply-chain-management (where standardiza-
tion bodies are very active).

Through our implementation experiences, we have also evaluated the pros
and cons of using an SOA. We have determined that the following forces will
push towards the creation of a service:

• the functionalities offered by the service are supported by an underlying
legacy system, so a service interface is a way to ‘‘open up’’ a legacy system
without compromising its underlying intellectual property.

• the functionalities offered by the services are reused across several busi-
ness processes associated with the application domain.

Against the creation of a service would be the following factors:

• the performance penalties incurred by SOA-enabling technologies.
• the extra development time associated with developing the service wrap-

pers that can be significant when such a service in used by only one
business process.

The results of this evaluation are conformant to another study that considers
five other business processes in the same domain (Dabous 2005). This shows
that although service-oriented technologies have the potential to bridge the
business-technical divide, their effective usage still depends on the domain
context taking into account the nature and number of its business processes,
existing legacy systems and the quality factors that are of most concern to
stakeholders.

References

Bolcer G, Kaiser G (1999) SWAP: leveraging the web to manage workflow. IEEE Internet
Comput 3(1):55–88

Business Process Management Notation (BPMN). Business process management initiative
(BPMI.org), May 2004. Version 1.0, available at http://www.bpmn.org/Documents

Curbera F, Khalaf R, Mukhi N, Tai S, Weerawarana S (2003) The next step in web services.
Commun ACM 46(10):29–34

Dabous FT (2005) Pattern-based approach for the architectural design of e-business applications.
Phd thesis, School of Information Systems, Technology and Management, The University of
New South Wales, Australia

Hammer M, Champy J (1993) Reengineering the corporation: a manifesto for business revolution.
HarperBusiness, New York

A service-oriented architecture for financial business processes 199

123

www.manaraa.com

Harris L (2003) Trading and exchanges: market microstructure for practitioners. Oxford Uni-
versity Press, New York

van den Heuvel W, Papazoglou MP, Jeusfeld MA (1999) Configuring business objects from legacy
systems. In: Proceedings of 11th International Conference CAiSE’99. Springer, Heidelberg,
Germany, pp 41–56

van den Heuvel W, van Hillegersberg J, Papazoglou M (2002) A methodology to support web-
services development using legacy systems. In: IFIP TC8 / WG8.1 Working Conference on
Engineering Information Systems in the Internet Context, pp 81–103

Hollinsworth D (1995) The workflow reference model. Technical Report TC00-1003, Workflow
Managment Coalition. http://www.wfmc.org/standards/docs/tc003v11.pdf

Homann U, Rill M, Wimmer A (2004) Flexible value structures in banking. Commun ACM
47(5):34–36

Huhns MN, Singh MP (2005) Service-oriented computing: key concepts and principles. Internet
Comput IEEE 9(1):75–81

Ma KJ (2005) Web services: what’s real and what’s not? IT Prof 7(2):14–21
Mecella M, Batini C (2000) Cooperation of heterogeneous legacy information systems: a meth-

odological framework. In: Proceedings of the 4th International Enterprise Distributed Object
Computing Conference (EDOM’00). Makuhari, Japan, pp 216–225

Mecella M, Pernici B (2001) Designing wrapper components for e-services in integrating hetro-
geneous systems. VLDB J 10(1):2–15

Medjahed B, Benatallah B, Bouguettaya A, Ngu AHH, Elmagarmid AK (2003) B2B interactions:
issues and enabling technologies. VLDB J:59–85

Papazoglou M (2003) Service-oriented computing: concepts, characteristics and directions. In:
Proceedings of the 4th International Conference on Web Information Systems engineering
(WISE’03). Rome, Italy, pp 3–12

Pasley J (2005) How BPEL and SOA are changing web services development. Internet Comput
IEEE 9(3):60–67

Quocirca Ltd. SOA (2005) Substance or hype—the IT professional verdict on service oriented
architecture. Technical report, Quocirca Insight Report, 2005

Rabhi FA, Benatallah B (2002) A service-based architecture for capital markets systems. IEEE
Netw 16(1):15–19

Workflow management facility, revised submission, July 1998. ftp://ftp.omg.org/pub/docs/bom/98-
06-07.pdf

Yang J, Papazoglou M (2000) Interoperation support for electronic business. Commun ACM
43(6):39–47

Yu H, Rabhi FA, Dabous FT (2004) An exchange service for financial markets. In :Proceedings of
the 6th International Conference on Enterprise Information Systems (ICEIS’04). Porto,
Portugal, pp 403–410

Zimmermann O, Milinski S, Craes M, Oellermann F (2004) Second generation web services-
oriented architecture in production in the finance industry. In: OOPSLA ’04: companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications. ACM Press, New York, pp 283–289

200 F. A. Rabhi et al.

123

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A service-oriented architecture for financial business processes
	Abstract
	Introduction
	Service-oriented concepts
	A service-oriented architecture for capital markets
	Fig1
	Case study
	Exchange service
	Service description
	Implementation
	Fig2
	Service description
	Service description
	Fig3
	Implementation
	Trading strategy simulation service
	Fig4
	Evaluation
	Expressing complex business processes
	Quality-related aspects
	Performance
	Development effort
	Tab1
	Maintenance effort
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

